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We consider the problem of inferring the parameters of a stochastic differential equation (SDE) given discrete-
time observations of a single trajectory. Parameter estimation for SDEs can be challenging for several reasons;
when a single trajectory is observed, one has to rely on time invariance and ergodicity properties of the SDE to
be able to infer the values of the parameters. Moreover, often the likelihood of the observation is not available in
closed form and sophisticated simulation based approaches (e.g. Monte Carlo methods, approximate Bayesian
computation, etc. ) may be needed, which can be computationally intensive and time-consuming. Therefore,
finding reliable and easy-to-compute estimators is of fundamental importance.
Let T > 0 be a final time and X = (X(t), 0 ≤ t ≤ T ) be the Ornstein-Uhlenbeck process which solves the Itô
SDE

dX(t) = −αX(t)dt+
√
2σdW (t), X(0) = X0 ∈ R, (1)

where α > 0 is the drift coefficient and σ > 0 is the diffusion coefficient. The Ornstein-Uhlenbeck process is
extensively used in physics and biology (see e.g. [2] and [1]), therefore a well-understanding of its stochastic
properties is absolutely beneficial.

• (Q1)

1. Derive the exact solution X(t) of (1) when X0 ∈ R is given. Then, derive its distribution µt and
write its probability density function ρt.

2. Is the solution of (1) a martingale? Justify your answer.

3. The solution X(t) of (1) has the property of being ergodic, i.e., its distribution µt tends for t→ ∞ to
an invariant measure, which we denote by µ∞ and which admits a probability density function ρ∞.
The function ρ∞ is the unique solution of the stationary Fokker-Planck equation, a partial differential
equation (PDE) which reads

L∗ρ = 0, on R,∫
R
ρ(x)dx = 1,

(2)

where the normalization condition is taken to ensure the uniqueness of the solution, and that ρ∞ is
indeed a probability density function. The differential operator L∗ is the L2-adjoint of the generator
L of (1), which is defined as

Lφ(x) = −αxφ′(x) + σφ′′(x) (4)

for all sufficiently smooth functions φ : R → R. In particular, L∗ is defined by the relation∫
R
v(x)Lu(x)dx =

∫
R
u(x)L∗v(x)dx

where u, v : R → R are smooth functions with compact support.
Compute the operator L∗ and write the stationary Fokker-Planck equation (2) explicitly for the SDE
(1). Derive the invariant measure µ∞ and verify that its probability density function ρ∞ satisfies the
stationary Fokker-Planck equation (2).

4. Prove that the operator L is a non positive operator on

H2(R, ρ∞) := {f ∈ L2(R, ρ∞) : f ′, f ′′ ∈ L2(R, ρ∞)},

i.e., ⟨f,Lf⟩L2(R,ρ∞) ≤ 0 for f ∈ H2(R, ρ∞) and its null space is given by constant functions.

Hint: You can assume that C∞
0 (R) is dense in H2(R, ρ∞).
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5. Sometimes, a positive constant term is added in the drift of (1), i.e.

dX(t) = α(p−X(t))dt+
√
2σdW (t), X(0) = X0, (3)

for p > 0. Equation (3) is a mean-reverting process. Explain the meaning of ”mean-reverting”. If
X(0) = p, what can we say about E[X(t)]? And if X(0) ̸= p?

(Q2)

1. Compute an approximate solution of (1) with final time T = 103 employing the Euler-Maruyama
method with a discretization step h = 2−9 for M = 104 different realizations of the Brownian mo-
tion. Set the drift coefficient α = 1 and the diffusion coefficient σ = 1. Verify numerically that the
solution X(T ) at the final time is approximately distributed accordingly to the invariant measure

µ∞ by comparing the histogram of
{
X(m)(T )

}M

m=1
with the density ρ∞.

2. Which is the strong order of convergence of the Euler-Maruyama in this case? And the weak order?

• (Q3) Show that the covariance function of the process X(t) at stationarity, i.e., when both t, s → ∞, is
given by

C(t, s) = σ

α
e−α|t−s|. (4)

• (Q4) Let ∆ > 0 be a sampling rate and assume that we are provided with discrete data in the form{
X̃n

}N

n=0
where N = T/∆ and X̃n = Xn∆ for n = 0, . . . , N , i.e., equispaced observations from a single

realization of the solution of (1) until time T . Assume furthermore that the coefficients α and σ are
unknown and we aim to estimate them employing the data. In this context, approaches based on the
classic estimators fail. In particular, the coefficient σ could be estimated approximating the quadratic
variation of the path X with the available data, i.e., defining the estimator

σ̂∆
N =

1

2∆N

N−1∑
n=0

(
X̃n+1 − X̃n

)2

Moreover, for the coefficient α, one could derive an approximate maximum likelihood estimator in the
following form

α̂∆
N = −

∑N−1
n=0 X̃n

(
X̃n+1 − X̃n

)
∆
∑N−1

n=0 X̃
2
n

However, these estimators do not converge to the exact coefficients in the limit of infinite data (and fixed
∆).

1. Show that the estimators σ̂∆
N and α̂∆

N are asymptotically biased, by computing the almost sure limits

σ∆
∞ = lim

N→∞
σ̂∆
N and α∆

∞ = lim
N→∞

α̂∆
N

and verify that σ∆
∞ ̸= σ and α∆

∞ ̸= α.
Hint. Since the solution X(t) of (1) is ergodic, the data satisfy the following ergodic theorems for all
functions f : R → R and g : R2 → R smooth enough

lim
N→∞

1

N

N−1∑
n=0

f
(
X̃n

)
= Eµ∞ [f (X0)] , a.s.

lim
N→∞

1

N

N−1∑
n=0

g
(
X̃n, X̃n+1

)
= Eµ∞ [g (X0, X∆)] , a.s.

(5)

where the superscript µ∞ denotes the fact that X0 and X∆ are at stationarity, i.e., distributed ac-
cording to the invariant measure µ∞. These results yield an equality between time averages (on the
left-hand side) and ensemble averages (on the right-hand side).
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2. Verify that

lim
∆→0

σ∆
∞ = σ and lim

∆→0
α∆
∞ = α

which imply that these estimators provide good approximations of the true unknown coefficients
when the sampling rate ∆ is sufficiently small.

• (Q5)

1. Generate an “exact” trajectory of the SDE (1) with parameters α = 1, σ = 1, and final time T = 103

(in practice, you could use the the Euler-Maruyama method with a discretization step h = 2−10).
Consider now different values of the sampling rate ∆ = 2−i for i = 0, 1, . . . , 7 and generate synthetic

observations
{
X̃n

}N

n=0
by evaluating the trajectory at time n∆. For each value of ∆ compute now

the estimators α̂∆
N and σ̂∆

N and plot the results varying ∆ together with the exact values of the
coefficients α and σ.

2. Repeat the experiment using this time the Milstein Method. Comment the results that you obtain.

• (Q6) In concrete applications one is usually not allowed to choose the sampling rate ∆ because the data
are given, and therefore we cannot rely on the the previous estimators if ∆ is too large. Let us for now
focus only on the drift coefficient α and assume the diffusion coefficient σ to be known. A different ap-
proach consists in constructing estimating functions based on the eigenvalues and the eigenfunctions of the
operator −La given in (4) and where the exact drift coefficient α is replaced by the parameter a. It can
be shown that the operator −La has a countable set of distinct nonnegative eigenvalues {λj(a)}∞j=0 which

satisfy 0 ≤ λ0(a) < λ1(a) < · · · < λj(a) ↗ +∞ and whose corresponding eigenfunctions {ϕj(·; a)}∞j=0

form an orthonormal basis of L2(R, ρ∞(· ; a)) where ρ∞(· ; a) is the invariant density distribution found
in (Q1) where α is replaced by a.

1. State the eigenvalue problem −Laϕ(x; a) = λ(a)ϕ(x; a) in this context.

2. Verify that the eigenvalues are given by

λj(a) = ja, j ∈ N

and the corresponding eigenfunctions satisfy the following recurrence relation

ϕ0(x; a) = 1

ϕ1(x; a) = x

ϕj(x; a) = xϕj−1(x; a)−
σ

a
(j − 1)ϕj−2(x; a), j ≥ 2

(6)

Hint. Prove and use the fact that the functions defined by the recurrence relation (6) satisfy

ϕ′j(x; a) = jϕj−1(x; a), j ≥ 1

3. Let J be a positive integer and consider the first eigenpairs {(λj(a), ϕj(a))}Jj=1 and a set {ψ}Jj=1 of
smooth functions ψj : R → R. Define the estimating function

G(a) =
1

N

J∑
j=1

N−1∑
n=0

ψj

(
X̃n

)(
ϕj

(
X̃n+1; a

)
− e−λj(a)∆ϕj

(
X̃n; a

))
and let the estimator α̃∆

N be the solution of the nonlinear equation G(a) = 0.

Set J = 1 and ψ1(x) = x. Compute the almost sure limit

G(a) = lim
N→∞

G(a)
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and verify that G(a) = 0 if and only if a = α.

4. Give the analytical expression of the estimator α̃∆
N in the case J = 1 and ψ1(x) = x and show that

it is strongly consistent, i.e., prove that

lim
N→∞

α̃∆
N = α, a.s.,

independently of the sampling rate ∆.

• (Q7)

1. Generate an “exact” trajectory of the SDE (1) with parameters α = 1, σ = 1, and final time T = 103

(in practice, you could use the Euler-Maruyama method with a discretization step h = 2−10). Con-
sider now different values of the sampling rate ∆ = 2−i for i = 0, 1, . . . , 7 and generate synthetic

observations
{
X̃n

}N

n=0
by evaluating the trajectory at time n∆. For each value of ∆ compute now

the estimators found in point (Q6) and plot the results varying ∆ together with the exact value of
the drift coefficient α.

2. Repeat the procedure of point (Q7)-1 for M = 104 times, each time generating a new independent
trajectory and synthetic observations with sampling rate ∆ = 1. For each repetition m = 1, . . . ,M

of the experiment, compute the estimator α̃
∆,(m)
N . Verify numerically that the estimator satisfies a

central limit theorem, i.e., that
√
N

(
α̃∆
N − α

)
is approximately distributed as µ̃ = N (0,Σ) where

Σ =
e2α∆ − 1

∆2

by comparing the histogram of
{√

N
(
α̃
∆,(m)
N − α

)}M

m=1
and the density µ̃ (you may use a larger

time step of h = 2−9 to reduce the overall computational cost).

• (Q8) Let us now assume that also the diffusion coefficient σ is unknown. In this case we replace σ in
the generator by a parameter s and therefore also the eigenvalues and the eigenfunctions can depend on
both a and s. Moreover, we choose a set {Ψj}Jj=1 of vector-valued smooth functions Ψj : R → R2. Then,
the estimating function reads

G(a, s) =
1

N

J∑
j=1

N−1∑
n=0

Ψj

(
X̃n

)(
ϕj

(
X̃n+1; a, s

)
− e−λj(a,s)∆ϕj

(
X̃n; a, s

))
and the couple of estimators

(
α̃∆
N , σ̃

∆
N

)
is the solution of the two-dimensional nonlinear system G(a, s) = 0.

1. Set J = 2 and Ψ1(x) = Ψ2(x) =
(
x2 x

)⊤
. Write explicitly the nonlinear system G(a, s) = 0 in

this case.

2. Generate an “exact” trajectory of the SDE (1) with parameters α = 1, σ = 1, and final time T = 103

(in practice, you could use the the Euler-Maruyama method with a discretization step h = 2−10 or

h = 2−9 to lower the computational cost). Generate synthetic observations
{
X̃n

}N

n=0
with sampling

rate ∆ = 1 by evaluating the trajectory at time n∆ and compute the pair of estimators ( α̃∆
N , σ̃

∆
N )

by solving the nonlinear system found in point (Q8)-1. Plot the evolution of the estimators α̃∆
n and

σ̃∆
n varying the number of available observations n = 2, 3, . . . , N , together with the exact values of

the coefficients α and σ.
Hint. In order to solve the nonlinear system you can use the function fsolve in Matlab or scipy.optimize.fsolve

in PYTHON with initial value
(

1
2

1
2

)⊤
.
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